skip to main content


Search for: All records

Creators/Authors contains: "Jiang, Jie"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 29, 2025
  2. Free, publicly-accessible full text available June 27, 2024
  3. Laser spectroscopy of the229mTh nuclear clock transition is necessary for the future construction of a nuclear-based optical clock. Precision laser sources with broad spectral coverage in the vacuum ultraviolet are needed for this task. Here, we present a tunable vacuum-ultraviolet frequency comb based on cavity-enhanced seventh-harmonic generation. Its tunable spectrum covers the current uncertainty range of the229mTh nuclear clock transition.

     
    more » « less
  4. Inversion symmetry breaking could lead to the creation of a Rashba–Dresselhauls magnetic field, which plays the key role in spintronic devices. In this work, we propose and develop a composition gradient engineering approach that breaks inversion symmetry into inorganic halide perovskites with strong spin–orbit coupling. We synthesize epitaxial CsPbBr x Cl (3− x ) with Br/Cl composition gradient by a two-step chemical vapor deposition approach. Through optoelectronic measurements, we show the presence of circular photogalvanic effects (CPGEs), evidencing a Rashba-like spin polarized band structure. By spatially resolved photoluminescence spectra, we find that the observed CPGE is likely a cumulative result of inversion symmetry-broken interfaces featured by abrupt and stepwise composition gradient between the pristine and separated daughter phases. Our work suggests an avenue in engineering the spintronic property of halide perovskites for information processing. 
    more » « less
  5. null (Ed.)
  6. Free, publicly-accessible full text available June 13, 2024